Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - Review Exercises - Page 580: 84

Answer

$$1$$

Work Step by Step

$$\eqalign{ & \int_0^\infty {\frac{{{e^{ - 1/x}}}}{{{x^2}}}dx} \cr & {\text{By the Definition of Improper Integrals with Infinite }} \cr & {\text{Integration Limits}} \cr & \int_a^\infty {f\left( x \right)dx = \mathop {\lim }\limits_{b \to \infty } } \int_a^b {f\left( x \right)} dx,{\text{ then}} \cr & \int_0^\infty {\frac{{{e^{ - 1/x}}}}{{{x^2}}}dx} = \mathop {\lim }\limits_{b \to \infty } \int_0^b {\frac{{{e^{ - 1/x}}}}{{{x^2}}}dx} \cr & {\text{Where}} \cr & \int {\underbrace {{e^{ - 1/x}}}_{{e^u}}\underbrace {\left( {\frac{1}{{{x^2}}}} \right)dx}_{du}} = {e^{ - 1/x}} + C \cr & \mathop {\lim }\limits_{b \to \infty } \int_0^b {\frac{{{e^{ - 1/x}}}}{{{x^2}}}dx} = \mathop {\lim }\limits_{b \to \infty } \left[ {{e^{ - 1/x}}} \right]_0^b \cr & = \mathop {\lim }\limits_{b \to \infty } \left[ {{e^{ - 1/b}} - {e^{ - 1/0}}} \right] \cr & = \mathop {\lim }\limits_{b \to \infty } \left[ {{e^{ - 1/b}} - {e^{ - \infty }}} \right] \cr & = \mathop {\lim }\limits_{b \to \infty } \left[ {{e^{ - 1/b}} - 0} \right] \cr & = \mathop {\lim }\limits_{b \to \infty } \left[ {{e^{ - 1/b}}} \right] \cr & {\text{Evaluate the limit when }}b \to \infty \cr & = {e^{ - 1/\infty }} \cr & = {e^0} \cr & = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.