Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - Review Exercises - Page 580: 58

Answer

$$y = \frac{1}{2}\sqrt {4 - {x^2}} - \ln \left| {\frac{{2 + \sqrt {4 - {x^2}} }}{x}} \right| + C$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = \frac{{\sqrt {4 - {x^2}} }}{{2x}} \cr & {\text{Separate the variables}} \cr & dy = \frac{{\sqrt {4 - {x^2}} }}{{2x}}dx \cr & {\text{Integrate both sides}} \cr & \int {dy} = \int {\frac{{\sqrt {4 - {x^2}} }}{{2x}}} dx \cr & y = \frac{1}{2}\int {\frac{{\sqrt {4 - {x^2}} }}{x}} dx \cr & {\text{Integrate by tables, use }} \cr & \int {\frac{{\sqrt {{a^2} - {u^2}} }}{u}du = } \sqrt {{a^2} - {u^2}} - a\ln \left| {\frac{{a + \sqrt {{a^2} - {u^2}} }}{u}} \right| + C \cr & y = \frac{1}{2}\left( {\sqrt {4 - {x^2}} - 2\ln \left| {\frac{{2 + \sqrt {4 - {x^2}} }}{x}} \right|} \right) + C \cr & y = \frac{1}{2}\sqrt {4 - {x^2}} - \ln \left| {\frac{{2 + \sqrt {4 - {x^2}} }}{x}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.