Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 576: 69

Answer

$$A = \pi $$

Work Step by Step

$$\eqalign{ & y = \frac{1}{{{x^2} + 1}},{\text{ }} - \infty < x < \infty \cr & {\text{The area is given by}} \cr & A = \int_{ - \infty }^\infty {\frac{1}{{{x^2} + 1}}} dx \cr & {\text{By symmetry}} \cr & A = 2\int_0^\infty {\frac{1}{{{x^2} + 1}}} dx \cr & {\text{By the Definition of Improper Integrals with Infinite }} \cr & {\text{Integration Limits}} \cr & A = 2\mathop {\lim }\limits_{b \to \infty } \int_0^b {\frac{1}{{{x^2} + 1}}} dx \cr & {\text{Integrate}} \cr & A = 2\mathop {\lim }\limits_{b \to \infty } \left[ {\arctan x} \right]_0^b \cr & A = 2\mathop {\lim }\limits_{b \to \infty } \left[ {\arctan b - \arctan 0} \right] \cr & A = 2\mathop {\lim }\limits_{b \to \infty } \left[ {\arctan b} \right] \cr & {\text{Evaluate the limit when }}b \to \infty \cr & A = 2\left( {\arctan \infty } \right) \cr & A = 2\left( {\frac{\pi }{2}} \right) \cr & A = \pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.