Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 576: 68

Answer

$$A = 1$$

Work Step by Step

$$\eqalign{ & y = - \ln x,{\text{ }}0 < x \leqslant 1 \cr & {\text{The area is given by}} \cr & A = \int_0^1 {\left( { - \ln x} \right)} dx \cr & A = - \int_0^1 {\ln x} dx \cr & \ln x{\text{ has an infinite discontinuity at }}x = 0,{\text{so we can write}} \cr & A = - \mathop {\lim }\limits_{a \to {0^ + }} \int_a^1 {\ln x} dx \cr & {\text{Integrate}} \cr & A = - \mathop {\lim }\limits_{a \to {0^ + }} \left[ {x\ln x - x} \right]_a^1 \cr & A = - \mathop {\lim }\limits_{a \to {0^ + }} \left[ {\left( {1\ln 1 - 1} \right) - \left( {a\ln a - a} \right)} \right] \cr & A = - \mathop {\lim }\limits_{a \to {0^ + }} \left[ { - 1 - \left( {a\ln a - a} \right)} \right] \cr & {\text{Evaluate }}a \to {0^ + } \cr & A = - \left[ { - 1 - \left( {\underbrace {{0^ + }\ln {0^ + }}_0 - {0^0}} \right)} \right] \cr & A = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.