Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.8 Exercises - Page 576: 67

Answer

$$A = e$$

Work Step by Step

$$\eqalign{ & y = {e^x},{\text{ }} - \infty < x \leqslant 1 \cr & {\text{The area is given by}} \cr & A = \int_{ - \infty }^1 {{e^x}} dx \cr & {\text{By the Definition of Improper Integrals with Infinite }} \cr & {\text{Integration Limits}} \cr & \int_{ - \infty }^b {f\left( x \right)dx = \mathop {\lim }\limits_{a \to - \infty } } \int_a^b {f\left( x \right)} dx,{\text{ then}} \cr & A = \mathop {\lim }\limits_{a \to - \infty } \int_a^1 {{e^x}} dx \cr & {\text{Integrate}} \cr & A = \mathop {\lim }\limits_{a \to - \infty } \left[ {{e^x}} \right]_a^1 \cr & A = \mathop {\lim }\limits_{a \to - \infty } \left[ {{e^1} - {e^a}} \right] \cr & A = \mathop {\lim }\limits_{a \to - \infty } \left( {e - {e^a}} \right) \cr & {\text{Evaluate }}a \to - \infty \cr & A = e - {e^{ - \infty }} \cr & A = e - 0 \cr & A = e \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.