Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 532: 85

Answer

$$ \int \sec ^{4}(2 \pi x / 5) d x =\frac{5}{2\pi }\left(\frac{1}{3} \sec ^{2} (2 \pi x / 5) \tan (2 \pi x / 5)+\frac{2}{3} \tan (2 \pi x / 5) \right)+C$$

Work Step by Step

$$ \int \sec ^{4}(2 \pi x / 5) d x $$ Let $ u=2 \pi x / 5\ \ \to\ \ \ (5/2\pi)du= dx $ $$ \int \sec ^{4}(2 \pi x / 5) d x=\frac{5}{2\pi } \int \sec ^{4}(u) d u $$ Here $n= 4$, Use the formula $$ \int \sec ^{n} x d x=\frac{1}{n-1} \sec ^{n-2} x \tan x+\frac{n-2}{n-1} \int \sec ^{n-2} x d x $$ Then \begin{align*} \int \sec ^{4}(2 \pi x / 5) d x&=\frac{5}{2\pi } \int \sec ^{4}(u) d u\\ &=\frac{5}{2\pi }\left(\frac{1}{3} \sec ^{2} u \tan u+\frac{2}{3} \int \sec ^{2} u d u\right)\\ &=\frac{5}{2\pi }\left(\frac{1}{3} \sec ^{2} u \tan u+\frac{2}{3} \tan u \right)+C\\ &=\frac{5}{2\pi }\left(\frac{1}{3} \sec ^{2} (2 \pi x / 5) \tan (2 \pi x / 5)+\frac{2}{3} \tan (2 \pi x / 5) \right)+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.