Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 532: 86

Answer

$$\int \sin ^{4} x \cos ^{2} x d x =\frac{-1}{6}\cos ^{3} x \sin ^{3} x -\frac{1}{8}\cos ^{3} x \sin x + \frac{ 1}{16} x+\frac{1}{32}\sin 2 x +C$$

Work Step by Step

$$ \int \sin ^{4} x \cos ^{2} x d x $$ Here $ m=2,\ n=4$, Use the formula $$ \begin{aligned} \int \cos ^{m} x \sin ^{n} x d x=&-\frac{\cos ^{m+1} x \sin ^{n-1} x}{m+n}+\\ & \frac{n-1}{m+n} \int \cos ^{m} x \sin ^{n-2} x d x \end{aligned} $$ Then \begin{align*} \int \sin ^{4} x \cos ^{2} x d x&= -\frac{\cos ^{3} x \sin ^{3} x}{6} + \frac{3}{6} \int \cos ^{2} x \sin ^{ 2} x d x \\ &=-\frac{\cos ^{3} x \sin ^{3} x}{6} + \frac{1}{2}\left(-\frac{\cos ^{3} x \sin x}{4}+ \frac{ 1}{4} \int \cos ^{2} x d x \right)\\ &=-\frac{\cos ^{3} x \sin ^{3} x}{6} + \frac{1}{2}\left(-\frac{\cos ^{3} x \sin x}{4}+ \frac{ 1}{8} \int( 1+\cos 2 x ) d x \right)\\ &=-\frac{\cos ^{3} x \sin ^{3} x}{6} + \frac{1}{2}\left(-\frac{\cos ^{3} x \sin x}{4}+ \frac{ 1}{8} ( x+\frac{1}{2}\sin 2 x ) \right)+C\\ &=\frac{-1}{6}\cos ^{3} x \sin ^{3} x -\frac{1}{8}\cos ^{3} x \sin x + \frac{ 1}{16} x+\frac{1}{32}\sin 2 x +C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.