Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 392: 107

Answer

$$y' = \frac{1}{{\sqrt {{x^2} + 1} }}$$

Work Step by Step

$$\eqalign{ & \frac{d}{{dx}}\left[ {{{\sinh }^{ - 1}}x} \right] = \frac{1}{{\sqrt {{x^2} + 1} }} \cr & {\text{Let }}y = {\sinh ^{ - 1}}x,{\text{ then}} \cr & \sinh y = x \cr & {\text{By implicit differentiation}} \cr & \frac{d}{{dx}}\left[ {\sinh y} \right] = \frac{d}{{dx}}\left[ x \right] \cr & \left( {\cosh y} \right)y' = 1 \cr & {\text{Solve for }}y' \cr & y' = \frac{1}{{\cosh y}} \cr & {\text{By the Hyperbolic identity }}\cosh y = \sqrt {{{\sinh }^2}y + 1} \cr & y' = \frac{1}{{\sqrt {{{\sinh }^2}y + 1} }} \cr & y' = \frac{1}{{\sqrt {{x^2} + 1} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.