Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 392: 103

Answer

$$\frac{d}{{dx}}\left[ {\cosh x} \right] = \sinh x$$

Work Step by Step

$$\eqalign{ & \frac{d}{{dx}}\left[ {\cosh x} \right] = \sinh x \cr & {\text{By the definition of }}\cosh x \cr & \frac{d}{{dx}}\left[ {\cosh x} \right] = \frac{d}{{dx}}\left[ {\frac{{{e^x} + {e^{ - x}}}}{2}} \right] \cr & {\text{Differentiating}} \cr & = \frac{d}{{dx}}\left[ {\frac{{{e^x}}}{2}} \right] + \frac{d}{{dx}}\left[ {\frac{{{e^{ - x}}}}{2}} \right] \cr & = \frac{{{e^x}}}{2} - \frac{{{e^{ - x}}}}{2} \cr & = \frac{{{e^x} - {e^{ - x}}}}{2} \cr & {\text{Where }}\frac{{{e^x} - {e^{ - x}}}}{2} = \sinh x.{\text{The differentiation formula has}} \cr & {\text{been proved}}{\text{.}} \cr & = \sinh x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.