Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 392: 104

Answer

$$\frac{d}{{dx}}\left[ {\coth x} \right] = - {\operatorname{csch} ^2}x$$

Work Step by Step

$$\eqalign{ & \frac{d}{{dx}}\left[ {\coth x} \right] \cr & {\text{Using hyperbolic identities}} \cr & \frac{d}{{dx}}\left[ {\frac{{\cosh x}}{{\sinh x}}} \right] \cr & {\text{By the definition of }}\cosh x{\text{ and sinh }}x \cr & \frac{d}{{dx}}\left[ {\frac{{\cosh x}}{{\sinh x}}} \right] = \frac{d}{{dx}}\left[ {\frac{{\frac{{{e^x} + {e^{ - x}}}}{2}}}{{\frac{{{e^x} - {e^{ - x}}}}{2}}}} \right] = \frac{d}{{dx}}\left[ {\frac{{{e^x} + {e^{ - x}}}}{{{e^x} - {e^{ - x}}}}} \right] \cr & {\text{Differentiating and simplifying}} \cr & \frac{d}{{dx}}\left[ {\frac{{{e^x} + {e^{ - x}}}}{{{e^x} - {e^{ - x}}}}} \right] = \frac{{\left( {{e^x} - {e^{ - x}}} \right)\left( {{e^x} - {e^{ - x}}} \right) - \left( {{e^x} + {e^{ - x}}} \right)\left( {{e^x} + {e^{ - x}}} \right)}}{{{{\left( {{e^x} - {e^{ - x}}} \right)}^2}}} \cr & \frac{d}{{dx}}\left[ {\frac{{{e^x} + {e^{ - x}}}}{{{e^x} - {e^{ - x}}}}} \right] = \frac{{{e^{2x}} - 2 + {e^{ - 2x}} - {e^{2x}} - 2 - {e^{ - 2x}}}}{{{{\left( {{e^x} - {e^{ - x}}} \right)}^2}}} \cr & \frac{d}{{dx}}\left[ {\frac{{{e^x} + {e^{ - x}}}}{{{e^x} - {e^{ - x}}}}} \right] = \frac{{ - 4}}{{{{\left( {{e^x} - {e^{ - x}}} \right)}^2}}} \cr & \frac{d}{{dx}}\left[ {\frac{{{e^x} + {e^{ - x}}}}{{{e^x} - {e^{ - x}}}}} \right] = - {\left( {\frac{2}{{{e^x} - {e^{ - x}}}}} \right)^2} \cr & {\text{Where }}\operatorname{csch} x = \frac{2}{{{e^x} - {e^{ - x}}}} \cr & \frac{d}{{dx}}\left[ {\frac{{{e^x} + {e^{ - x}}}}{{{e^x} - {e^{ - x}}}}} \right] = - {\operatorname{csch} ^2}x \cr & {\text{Proved}}{\text{.}} \cr & \frac{d}{{dx}}\left[ {\coth x} \right] = - {\operatorname{csch} ^2}x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.