Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.7 Exercises - Page 382: 75

Answer

$$\frac{1}{{\sqrt {{a^2} - {u^2}} }}$$

Work Step by Step

$$\eqalign{ & \int {\frac{{du}}{{\sqrt {{a^2} - {u^2}} }}} = \arcsin \frac{u}{a} + C \cr & {\text{Differentiating}} \cr & \frac{d}{{dx}}\left[ {\arcsin \frac{u}{a} + C} \right] = \frac{{\frac{d}{{dx}}\left[ {\frac{u}{a}} \right]}}{{\sqrt {1 - {{\left( {\frac{u}{a}} \right)}^2}} }} + \frac{d}{{dx}}\left[ C \right] \cr & = \frac{{\frac{1}{a}}}{{\sqrt {1 - \frac{{{u^2}}}{{{a^2}}}} }} + 0 \cr & {\text{Simplifying}} \cr & = \frac{{\frac{1}{a}}}{{\sqrt {\frac{{{a^2} - {u^2}}}{{{a^2}}}} }} + 0 \cr & = \frac{1}{{\sqrt {{a^2} - {u^2}} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.