Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.5 Exercises: 80

Answer

$\frac{32}{3ln(3)}$

Work Step by Step

solve for indefinite integral let u=$\frac{x}{4}$ $\frac{1}{4}dx=du$ $dx=4du$ $\int3^{\frac{x}{4}}dx$ $=\int 3^udu$ $=\frac{3^u}{ln(3)}+C$ $=\frac{3^{\frac{x}{4}}}{ln(3)}+C$ ---- $\int3^{\frac{x}{4}}dx$ [-4,4] $=\frac{3^{-1}}{ln(3)}-\frac{3}{ln(3)}$ $=\frac{32}{3ln(3)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.