Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.3 Exercises - Page 344: 71

Answer

(a) Domain of $f$: (-$\infty$, $\infty$) Range of $f$: (-$\infty$, $\infty$) (b) Domain of $f^{-1}$: (-$\infty$, $\infty$) Range of $f^{-1}$: (-$\infty$, $\infty$) (d) $f$'($\frac{1}{2}$) = $\frac{3}{4}$ ($f^{-1}$)'($\frac{1}{8}$) = $\frac{4}{3}$

Work Step by Step

Function: $f$(x) = $x^{3}$, Point: ($\frac{1}{2}$,$\frac{1}{8}$) Function: $f$(x) = $\sqrt[3] x$, Point: ($\frac{1}{8}$,$\frac{1}{2}$) The domain and range of $x^{3}$ is (-$\infty$, $\infty$), (-$\infty$, $\infty$). The domain and range of $\sqrt[3] x$ is (-$\infty$, $\infty$), (-$\infty$, $\infty$). These graphs are inverses of each other. How to show that $x^{3}$ and $\sqrt[3] x$ are reciprocals at the given points: 1. Evaluate the derivative of $x^{3}$ at $x$ = $\frac{1}{2}$ The derivative of $x^{3}$ is $3x^{2}$ Plug in $\frac{1}{2}$ for $x$, $3($$\frac{1}{2}$)$^{2}$ $\frac{1}{2}$$^{2}$ equals $\frac{1}{4}$, multiply it by 3 and it equals $\frac{3}{4}$ So $f$'($\frac{1}{2}$) = $\frac{3}{4}$ 2. Evaluate the derivative of $\sqrt[3] x$ at $x$ = $\frac{1}{8}$ ($f^{-1}$)'($x$) = $\frac{1}{f'(f^{-1}(x))}$ ($f^{-1}$)'($\frac{1}{8}$) = $\frac{1}{f'(f^{-1}(\frac{1}{8}))}$ $f^{-1}(\frac{1}{8})$ = $\sqrt[3] \frac{1}{8}$ = $\frac{1}{2}$ ($f^{-1}$)'($\frac{1}{8}$) = $\frac{1}{f'(\frac{1}{2})}$ Earlier, we learned that $f$'($\frac{1}{2}$) = $\frac{3}{4}$ $\frac{1}{\frac{3}{4}}$ = $\frac{4}{3}$ So ($f^{-1}$)'($\frac{1}{8}$) = $\frac{4}{3}$ They are reciprocals
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.