Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 15 - Vector Analysis - 15.2 Exercises - Page 1062: 32

Answer

$\int_C \textbf F \cdot \textbf{dr} = -\frac{16}{3}+\frac{\pi^6}{24}$

Work Step by Step

$\textbf r(t) = 2\sin t \textbf i + 2\cos t \textbf j +\frac{1}{2}t^2 \textbf k$ it follows that, $x(t) = 2\sin t , y(t) = 2\cos t, z(t) = \frac{1}{2}t^2 $ $\textbf F(x,y,z) = x^2 \textbf i +y^2\textbf j + z^2\textbf k\\ \therefore \textbf F(x(t),y(t),z(t)) = 4\sin^2t \textbf i + 4\cos^2t \textbf j +\frac{t^2}{4}\textbf k\\ \textbf r' = 2\cos t \textbf i - 2\sin t \textbf j +t \textbf k\\ \int_C \textbf F \cdot d\textbf r = \int_{t=0}^{\pi}\textbf F \cdot \textbf r' dt\\ = \int_0^{\pi}(4\sin^2t \textbf i + 4\cos^2t \textbf j +\frac{t^2}{4}\textbf k)\cdot (2\cos t \textbf i - 2\sin t \textbf j +t \textbf k) dt\\ = \int_0^{\pi} (8\sin^2t.\cos t -8\cos^2t.\sin t + \frac{t^5}{4}) dt\\ =[\frac{8\sin^3t}{3}+\frac{8\cos^3t}{3}+\frac{t^6}{24}]_0^{\pi} = -\frac{16}{3}+\frac{\pi^6}{24}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.