Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 15 - Vector Analysis - 15.2 Exercises - Page 1062: 29

Answer

$\int_C \textbf F .\textbf {dr} = \frac{1}{2}$

Work Step by Step

$\textbf r(t) = \cos t \textbf i + \sin t \textbf j $ it follows that, $x(t) = \cos t , y(t) = \sin t $ $\textbf F(x,y) = 3x \textbf i +4y\textbf j \\ \therefore \textbf F(x(t),y(t)) = 3\cos t \textbf i + 4\sin t \textbf j\\ \textbf r' = -\sin t \textbf i +\cos t \textbf j\\ \int_C \textbf F \cdot d\textbf r = \int_{t=0}^{\pi/2}\textbf F \cdot \textbf r' dt\\ = \int_0^{\pi/2}(3\cos t \textbf i + 4\sin t \textbf j)\cdot (-\sin t \textbf i +\cos t \textbf j) dt\\ = \int_0^{\pi/2} (-3\cos t . \sin tr + 4 \sin t . \cos t) dt\\ =[\frac{\sin^2t}{2}]_0^{\pi/2} = \frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.