Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 15 - Vector Analysis - 15.2 Exercises - Page 1062: 30

Answer

$0$

Work Step by Step

$\textbf{F}(x,y)=3x\textbf{i}+4y\textbf{j}$ $C: \textbf{r}(t)=t\textbf{i}+\sqrt{4-t^2}\textbf{j}, -2\leq t\leq2$ $\textbf{r}(t)=(t,\sqrt{4-t^2})=(x(t),y(t)).$ Curve $C$ is the upper half of the circle with its center at $(0,0)$ and radius $R=2.$ We have \begin{eqnarray*}\int_{C}\textbf{F}\cdot d\textbf{r}&=&\int_{-2}^{2}(\textbf{F}\circ\textbf{r})(t)\cdot(x'(t),y'(t))\,dt\\ &=&\int_{-2}^{2}(3x(t)x'(t)+4y(t)y'(t))\,dt\\ &=&\int_{-2}^{2}(3t(t')+4\sqrt{4-t^2}(\sqrt{4-t^2})')\,dt\\ &=&\int_{-2}^{2}\left(3t+4\sqrt{4-t^2}\frac{-2t}{2\sqrt{4-t^2}}\right)\,dt\\ &=&\int_{-2}^{2}(3t-4t)\,dt\\ &=&-\int_{-2}^{2}t\,dt=0 \end{eqnarray*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.