Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.3 Exercises - Page 838: 24

Answer

$\textbf v(t) = (e^t +1) \textbf i + (8t+3) \textbf j + \textbf k \\ \textbf r(t) = (e^t+t-1)\textbf i + (4t^2+3t) \textbf j + t\textbf k\\ \textbf r(2)= (e^2+1)\textbf i + 20 \textbf j + 2\textbf k $

Work Step by Step

$\textbf a(t) = e^t \textbf i + 8 \textbf k\\ \Rightarrow \textbf v(t) = \int (e^t \textbf i + 8 \textbf k) dt\\ \Rightarrow \textbf v(t) = e^t \textbf i + 8t\textbf j + \textbf C (t)\\$ According to the question, $\textbf v(0)= 2\textbf i + 3 \textbf j + \textbf k\\ \therefore \textbf i + \textbf C (t) = 2\textbf i + 3 \textbf j + \textbf k\\ \Rightarrow \textbf C (t) = \textbf i + 3 \textbf j + \textbf k \\ \therefore \textbf v(t) = (e^t +1) \textbf i + (8t+3) \textbf j + \textbf k\\ r(t) = \int \textbf v(t) dt\\ = (e^t+t)\textbf i + (4t^2+3t) \textbf j + t\textbf k+ \textbf C’(t) $ Now, according to the question, $r(0) = 0$ $\therefore 1\textbf i + \textbf C’ = 0\\ \Rightarrow \textbf C’ = -\textbf i $ Hence, $\textbf r(t) = (e^t+t-1)\textbf i + (4t^2+3t) \textbf j + t\textbf k \\ \textbf r(2)= (e^2+1)\textbf i + 20 \textbf j + 2\textbf k$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.