Answer
$$\eqalign{
& {\bf{v}}\left( t \right) = t\left( {{\bf{i}} + {\bf{j}} + {\bf{k}}} \right) \cr
& {\bf{r}}\left( t \right) = \frac{1}{2}{t^2}{\bf{i}} + \frac{1}{2}{t^2}{\bf{j}} + \frac{1}{2}{t^2}{\bf{k}} \cr
& {\bf{r}}\left( 2 \right) = 2{\bf{i}} + 2{\bf{j}} + 2{\bf{k}} \cr} $$
Work Step by Step
$$\eqalign{
& {\bf{a}}\left( t \right) = {\bf{i}} + {\bf{j}} + {\bf{k}},{\text{ }}{\bf{v}}\left( 0 \right) = {\bf{0}},{\text{ }}{\bf{r}}\left( 0 \right) = {\bf{0}} \cr
& {\text{The velocity vector is}} \cr
& {\bf{v}}\left( t \right) = \int {{\bf{a}}\left( t \right)} dt \cr
& {\bf{v}}\left( t \right) = \int {\left( {{\bf{i}} + {\bf{j}} + {\bf{k}}} \right)} dt \cr
& {\bf{v}}\left( t \right) = t{\bf{i}} + t{\bf{j}} + t{\bf{k}} + {\bf{C}} \cr
& {\text{Applying the initial condition }}{\bf{v}}\left( 0 \right) = {\bf{0}} \cr
& {\bf{v}}\left( 0 \right) = \left( 0 \right){\bf{i}} + \left( 0 \right){\bf{j}} + \left( 0 \right){\bf{k}} + {\bf{C}} \cr
& {\bf{v}}\left( 0 \right) = {\bf{C}} \cr
& {\bf{0}} = {\bf{C}} \cr
& {\text{Therefore,}} \cr
& {\bf{v}}\left( t \right) = t{\bf{i}} + t{\bf{j}} + t{\bf{k}} \cr
& {\bf{v}}\left( t \right) = t\left( {{\bf{i}} + {\bf{j}} + {\bf{k}}} \right) \cr
& \cr
& {\text{The position vector is}} \cr
& {\bf{r}}\left( t \right) = \int {{\bf{v}}\left( t \right)} dt \cr
& {\bf{r}}\left( t \right) = \int {\left( {t{\bf{i}} + t{\bf{j}} + t{\bf{k}}} \right)} dt \cr
& {\bf{r}}\left( t \right) = \frac{1}{2}{t^2}{\bf{i}} + \frac{1}{2}{t^2}{\bf{j}} + \frac{1}{2}{t^2}{\bf{k}} + {\bf{C}} \cr
& {\text{Applying the initial condition }}{\bf{r}}\left( 0 \right) = {\bf{0}} \cr
& {\bf{r}}\left( 0 \right) = \frac{1}{2}{\left( 0 \right)^2}{\bf{i}} + \frac{1}{2}{\left( 0 \right)^2}{\bf{j}} + \frac{1}{2}{\left( 0 \right)^2}{\bf{k}} + {\bf{C}} \cr
& {\bf{r}}\left( 0 \right) = {\bf{C}} \cr
& {\bf{0}} = {\bf{C}} \cr
& {\text{Therefore, the position vector is}} \cr
& {\bf{r}}\left( t \right) = \frac{1}{2}{t^2}{\bf{i}} + \frac{1}{2}{t^2}{\bf{j}} + \frac{1}{2}{t^2}{\bf{k}} \cr
& \cr
& {\text{Find the position at time }}t = 2 \cr
& {\bf{r}}\left( 2 \right) = \frac{1}{2}{\left( 2 \right)^2}{\bf{i}} + \frac{1}{2}{\left( 2 \right)^2}{\bf{j}} + \frac{1}{2}{\left( 2 \right)^2}{\bf{k}} \cr
& {\bf{r}}\left( 2 \right) = 2{\bf{i}} + 2{\bf{j}} + 2{\bf{k}} \cr} $$