Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.3 Exercises - Page 838: 14

Answer

$${\bf{v}}\left( 4 \right) = 8{\bf{i}} + {\bf{j}} + 6{\bf{k}}$$$${\bf{a}}\left( 4 \right) = 2{\bf{i}} - \frac{3}{4}{\bf{k}}$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = {t^2}{\bf{i}} + t{\bf{j}} + 2{t^{3/2}}{\bf{k}},{\text{ }}t = 4 \cr & \left( {\bf{a}} \right){\text{Find the vectors: }}{\bf{v}}\left( t \right),{\text{ }}{\bf{a}}\left( t \right){\text{ and speed}}{\text{.}} \cr & {\bf{v}}\left( t \right) = {\bf{r}}'\left( t \right) \cr & {\bf{v}}\left( t \right) = \frac{d}{{dt}}\left[ {{t^2}{\bf{i}} + t{\bf{j}} + 2{t^{3/2}}{\bf{k}}} \right] \cr & {\bf{v}}\left( t \right) = 2t{\bf{i}} + {\bf{j}} + 3{t^{1/2}}{\bf{k}} \cr & {\text{speed}} = \left\| {{\bf{v}}\left( t \right)} \right\| = \left\| {2t{\bf{i}} + {\bf{j}} + 3{t^{1/2}}{\bf{k}}} \right\| \cr & {\text{speed}} = \sqrt {4{t^2} + 1 + 9t} \cr & {\bf{a}}\left( t \right) = {\bf{v}}'\left( t \right) \cr & {\bf{a}}\left( t \right) = \frac{d}{{dt}}\left[ {2t{\bf{i}} + {\bf{j}} + 3{t^{1/2}}{\bf{k}}} \right] \cr & {\bf{a}}\left( t \right) = 2{\bf{i}} - \frac{3}{2}{t^{ - 1/2}}{\bf{k}} \cr & \cr & \left( {\bf{b}} \right){\text{Evaluating }}{\bf{v}}\left( t \right),{\text{ }}{\bf{a}}\left( t \right){\text{ at }}t = 4 \cr & {\bf{v}}\left( 4 \right) = 2\left( 4 \right){\bf{i}} + {\bf{j}} + 3{\left( 4 \right)^{1/2}}{\bf{k}} \cr & {\bf{v}}\left( 4 \right) = 8{\bf{i}} + {\bf{j}} + 6{\bf{k}} \cr & {\bf{a}}\left( 4 \right) = 2{\bf{i}} - \frac{3}{2}{\left( 4 \right)^{ - 1/2}}{\bf{k}} \cr & {\bf{a}}\left( 4 \right) = 2{\bf{i}} - \frac{3}{4}{\bf{k}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.