Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.5 The Comparison, Ratio, And Root Tests - Exercises Set 9.5 - Page 636: 8

Answer

Diverges.

Work Step by Step

Write $\dfrac{{k\left( {k + 3} \right)}}{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 5} \right)}} = \dfrac{{{k^2} + 3k}}{{{k^3} + 8{k^2} + 17k + 10}}$. Notice that the leading term is $\dfrac{{{k^2}}}{{{k^3}}} = \dfrac{1}{k}$. Thus, we try to use $\dfrac{1}{k}$ in the Limit Comparison Test. Let ${a_k} = \dfrac{{k\left( {k + 3} \right)}}{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 5} \right)}}$ and ${b_k} = \dfrac{1}{k}$. Evaluate: $\rho = \mathop {\lim }\limits_{k \to \infty } \dfrac{{{a_k}}}{{{b_k}}} = \dfrac{{k\left( {k + 3} \right)}}{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 5} \right)}}\cdot k = \mathop {\lim }\limits_{k \to \infty } \dfrac{{{k^3} + 3{k^2}}}{{{k^3} + 8{k^2} + 17k + 10}}$ $ = \mathop {\lim }\limits_{k \to \infty } \dfrac{{1 + \dfrac{3}{k}}}{{1 + \dfrac{8}{k} + \dfrac{{17}}{{{k^2}}} + \dfrac{{10}}{{{k^3}}}}} = 1$ Since $\rho = 1 \gt 0$ and the harmonic series $\mathop \sum \limits_{k = 1}^\infty \dfrac{1}{k}$ diverges, by the Limit Comparison Test, the series $\mathop \sum \limits_{k = 1}^\infty \dfrac{{k\left( {k + 3} \right)}}{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 5} \right)}}$ diverges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.