Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.5 The Comparison, Ratio, And Root Tests - Exercises Set 9.5 - Page 636: 1

Answer

(a) converges (b) diverges

Work Step by Step

(a) The leading term is $\dfrac{1}{{5{k^2}}}$. Thus, we guess we can apply the comparison test with the convergent $\dfrac{1}{{{k^2}}}$ series. We check the following: $\dfrac{1}{{5{k^2} - k}} - \dfrac{1}{{{k^2}}} = \dfrac{{{k^2} - 5{k^2} + k}}{{5{k^4} - {k^3}}} = \dfrac{{ - 4{k^2} + k}}{{5{k^4} - {k^3}}} = \dfrac{{ - 4k + 1}}{{5{k^3} - {k^2}}}$ For $k \ge 1$, we have $ - 4k + 1 \lt 0$, ${\ \ \ \ \ \ \ }$ $5{k^3} - {k^2} \gt 0$ Therefore, $\dfrac{1}{{5{k^2} - k}} - \dfrac{1}{{{k^2}}} \lt 0$ Hence, $\mathop \sum \limits_{k = 1}^\infty \dfrac{1}{{5{k^2} - k}} \lt \mathop \sum \limits_{k = 1}^\infty \dfrac{1}{{{k^2}}}$ Since the bigger series is a convergent $p$-series, it follows from the Comparison Test, the series $\mathop \sum \limits_{k = 1}^\infty \dfrac{1}{{5{k^2} - k}}$ converges. (b) The leading term is $\dfrac{3}{k}$. We guess we can apply the Comparison Test with the divergent $\dfrac{1}{k}$ series. We have, $\dfrac{3}{{k - \dfrac{1}{4}}} \gt \dfrac{1}{k}$ Thus, $\mathop \sum \limits_{k = 1}^\infty \dfrac{3}{{k - \dfrac{1}{4}}} \gt \mathop \sum \limits_{k = 1}^\infty \dfrac{1}{k}$ The harmonic series $\mathop \sum \limits_{k = 1}^\infty \dfrac{1}{k}$ diverges. Therefore, by the Comparison Test, the series $\mathop \sum \limits_{k = 1}^\infty \dfrac{3}{{k - \dfrac{1}{4}}}$ also diverges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.