Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.1 Sequences - Exercises Set 9.1 - Page 605: 17

Answer

First five terms are : $\implies n=1$: $\dfrac{(1+1)(1+2)}{2(1)^2}=3$ $\implies n=2$: $\dfrac{(2+1)(2+2)}{2(2)^2}=1.5$ $\implies n=3$: $\dfrac{(3+1)(3+2)}{2(3)^2}=1.111111$ $\implies n=4$: $\dfrac{(4+1)(4+2)}{2(4)^2}=0.9375$ $\implies n=5$: $\dfrac{(5+1)(5+2)}{2(5)^2}=0.84$ Converges to $\dfrac{1}{2}$.

Work Step by Step

Plugging $n = {1,2,3,4,5}$ in $\dfrac{(n+1)(n+2)}{2n^2}$. $\implies n=1$: $\dfrac{(1+1)(1+2)}{2(1)^2}=3$ $\implies n=2$: $\dfrac{(2+1)(2+2)}{2(2)^2}=1.5$ $\implies n=3$: $\dfrac{(3+1)(3+2)}{2(3)^2}=1.111111$ $\implies n=4$: $\dfrac{(4+1)(4+2)}{2(4)^2}=0.9375$ $\implies n=5$: $\dfrac{(5+1)(5+2)}{2(5)^2}=0.84$ We see that $\lim\limits_{n \to \infty} \dfrac{(n+1)(n+2)}{2n^2}=\lim\limits_{n \to \infty} \dfrac{n^2+3n+2}{2n^2}\\=\lim\limits_{n \to \infty} \dfrac{1}{2}+\lim\limits_{n \to \infty} \dfrac{3}{2n}+\lim\limits_{n \to \infty} \dfrac{1}{n^2}\\=\dfrac{1}{2}+0+0\\=\dfrac{1}{2}$ Therefore, the given series converges to $\dfrac{1}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.