Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.1 Sequences - Exercises Set 9.1 - Page 605: 12

Answer

First five terms: $0, 2, \frac{3\sqrt{3}}{2}, 2\sqrt{2}, 5\sin(\pi/5)$. The sequence converges to $\pi$.

Work Step by Step

Putting $n = {1,2,3,4,5}$ in ${n \sin \frac{\pi}{n}}$, $\implies n=1$: $\sin(\pi) =0$ $\implies n=2$: $2\sin(\frac{\pi}{2}) =2$ $\implies n=3$: $3\sin(\frac{\pi}{3}) =3\times\frac{\sqrt3}{2}$ $\implies n=4$: $4\sin(\frac{\pi}{4}) =4\times\frac{1}{\sqrt2}=2\sqrt2$ $\implies n=5$: $5\sin(\frac{\pi}{5}) \approx2.9389$ The limit $\lim_{n\to\infty} {n \sin \frac{\pi}{n}} = \lim_{n\to\infty} {\frac{\sin \frac{\pi}{n}}{1/n}}$, which is of $\frac{\infty}{\infty}$ form. Thus, applying L’Hôpital’s rule, $$\lim_{n\to\infty} {\frac{\sin \frac{\pi}{n}}{1/n}} = \lim_{n\to\infty} {\frac{(\cos \frac{\pi}{n})(-\frac{\pi}{n^2})}{-\frac{1}{n^2}}}=\pi\lim_{n\to\infty} {\cos0}=\pi.$$ Thus, the sequence converges to $\pi$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.