Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 8 - Mathematical Modeling With Differential Equations - 8.1 Modeling With Differential Equations - Exercises Set 8.1 - Page 567: 14

Answer

See explanation

Work Step by Step

$(a)$ If $y = e^{-2x} sin 3x$ $y' = e^{-2x}(-2 sin 3x+ 3 cos 3x)$ $y'' = e^{2x}(-5 sin 3x-12 cos 3x)$ substitute into the equation $y'' + 4y' + 13y = 0 $ $e^{2x}(-5 sin 3x-12 cos 3x) + 4e^{-2x}(-2 sin 3x+ 3 cos 3x) +13e^{-2x} sin 3x = 0 $ $0 = 0$ verified If $y = e^{2x} cos 3x $ $y' = e^{-2x}(-3 sin 3x - 2 cos 3x) $ $y'' = e^{-2x}(12 sin 3x - 5 cos 3x)$ substitute into the equation $y'' + 4y' + 13y = 0 $ $e^{-2x}(12 sin 3x - 5 cos 3x) + 4e^{-2x}(-3 sin 3x - 2 cos 3x) + 13e^{-2x} cos 3x = 0$ $0 = 0$ verified $(b)$ If $y = e^{-2x}(c_1 sin 3x+c_2 cos 3x) $ then $y' = e^{-2x}[-(2c_1+3c_2) sin 3x+(3_c1-2c_2) cos 3x] $ and $y'' = e^{-2x}[(-5c_1+ 12c_2) sin 3x - (12c_1+5c_2) cos 3x ] $ substitute into the equation $y'' + 4y' + 13y = 0 $ $e^{-2x}[(-5c_1+ 12c_2) sin 3x - (12c_1+5c_2) cos 3x ] + 4 e^{-2x}[-(2c_1+3c_2) sin 3x+(3c_1-2c_2) cos 3x] + 13 e^{-2x}(c_1 sin 3x+c_2 cos 3x) = 0$ $ 0 = 0$ verified
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.