Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.3 Derivatives Of Inverse Functions; Derivatives And Integrals Involving Exponential Functions - Exercises Set 6.3 - Page 433: 59

Answer

$$\ln 10$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{h \to 0} \frac{{{{10}^h} - 1}}{h} \cr & {\text{The limit can be written as }} \cr & \mathop {\lim }\limits_{h \to 0} \frac{{{{10}^h} - {{10}^0}}}{{h - 0}} \cr & {\text{From the definition of the derivative }} \cr & f'\left( c \right) = \mathop {\lim }\limits_{h \to c} \frac{{f\left( x \right) - f\left( c \right)}}{{x - c}} \cr & \underbrace {\mathop {\lim }\limits_{h \to 0} \frac{{{{10}^h} - {{10}^0}}}{{h - 0}}}_{f'\left( c \right) = \mathop {\lim }\limits_{h \to c} \frac{{f\left( x \right) - f\left( c \right)}}{{x - c}}} \Rightarrow f\left( h \right) = {10^h},{\text{ }}a = 0 \cr & {\text{Then }} \cr & f'\left( h \right) = \frac{d}{{dh}}\left[ {{{10}^h}} \right] \cr & f'\left( h \right) = {10^h}\left( {\ln 10} \right) \cr & \mathop {\lim }\limits_{h \to 0} \frac{{{{10}^h} - {{10}^0}}}{{h - 0}} = f'\left( 0 \right) \cr & f'\left( 0 \right) = {10^0}\left( {\ln 10} \right) = \ln 10 \cr & {\text{Therefore,}} \cr & \mathop {\lim }\limits_{h \to 0} \frac{{{{10}^h} - 1}}{h} = \ln 10 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.