Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.9 Evaluating Definite Integrals By Substitution - Exercises Set 4.9 - Page 341: 40

Answer

$$\frac{1}{{{n^2} + 3n + 2}}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {x{{\left( {1 - x} \right)}^n}dx} \cr & {\text{Let }}u = 1 - x \Rightarrow x = 1 - u,{\text{ }}dx = - du \cr & {\text{The new limits of integration are:}} \cr & x = 1 \Rightarrow u = 0 \cr & x = 0 \Rightarrow u = 1 \cr & {\text{Apply the substitution}} \cr & \int_0^1 {x{{\left( {1 - x} \right)}^n}dx} = \int_1^0 {\left( {1 - u} \right){u^n}\left( { - du} \right)} \cr & {\text{ }} = \int_0^1 {\left( {1 - u} \right){u^n}du} \cr & {\text{ }} = \int_0^1 {\left( {{u^n} - {u^{n + 1}}} \right)du} \cr & {\text{Integrating}} \cr & {\text{ }} = \left[ {\frac{{{u^{n + 1}}}}{{n + 1}} - \frac{{{u^{n + 2}}}}{{n + 2}}} \right]_0^1 \cr & {\text{Evaluating}} \cr & {\text{ }} = \left[ {\frac{{{1^{n + 1}}}}{{n + 1}} - \frac{{{1^{n + 2}}}}{{n + 2}}} \right] - \left[ {\frac{{{0^{n + 1}}}}{{n + 1}} - \frac{{{0^{n + 2}}}}{{n + 2}}} \right] \cr & {\text{ }} = \frac{1}{{n + 1}} - \frac{1}{{n + 2}} \cr & {\text{ }} = \frac{{n + 2 - n - 1}}{{\left( {n + 1} \right)\left( {n + 2} \right)}} \cr & {\text{ }} = \frac{1}{{{n^2} + 3n + 2}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.