Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.8 Average Value Of A Function And It's Applications - Exercises Set 4.8 - Page 336: 24

Answer

\begin{align} V_{ave} \approx 247219 \end{align}

Work Step by Step

$\text{The function of the value of yacht is given by}$ \begin{align} V(t) = 275 000\times \sqrt {\frac{20}{t+20}} \end{align} $\text{The average value in the first 10 years will be}$ \begin{align} & V_{ave} = \frac{275000}{10} \int_0^{10} \sqrt {\frac{20}{t+20}} \ dt = 27500 \int_0^{10} \frac{2 \sqrt 5}{\sqrt {t+20}} \ dt \end{align} $\text{Apply u = $\sqrt {t+20}$ $\Rrightarrow$ 2du = $\frac{1}{\sqrt {t+20}}$ dt:}$ \begin{align} V_{ave} = 55000 \sqrt 5 \int_{\sqrt 20}^{\sqrt 30} 2du = 110000 \sqrt 5 \times (\sqrt 30 - \sqrt 20) \approx 247219 \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.