Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 3 - The Derivative In Graphing And Applications - 3.2 Analysis Of Functions II: Relative Extrema; Graphing Polynomials - Exercises Set 3.2 - Page 206: 57

Answer

Relative maximum: $x=\pi$ Relative minimum: $x=\frac{3 \pi}{2}$ and $x=\frac{ \pi}{2}$

Work Step by Step

First derivative \[ f^{\prime}(x)=-2 \sin x \cos x \] Critical points (zeros of first derivative or point where first derivative does not exist): \[ x=\frac{3 \pi}{2}, x=\pi \text { and } x=\frac{ \pi}{2} \] Second derivative \[ f^{\prime \prime}(x)=-2 \cos ^{2} x+2 \sin ^{2} x \] Values of second derivative at critical points: \[ f^{\prime \prime}\left(\frac{\pi}{2}\right)=2>0 \] $f^{\prime \prime}(\pi)=-2<0$ \[ f^{\prime \prime}\left(\frac{3 \pi}{2}\right)=1>0 \] Relative minimum: $x=\frac{\pi}{2}$ and $x=\frac{3 \pi}{2}$ Relative maximum: $x=\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.