Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 3 - The Derivative In Graphing And Applications - 3.2 Analysis Of Functions II: Relative Extrema; Graphing Polynomials - Exercises Set 3.2 - Page 206: 55

Answer

Relative maximum: $ x=\frac{5 \pi}{4}, x=\frac{\pi}{4}, x=\frac{3 \pi}{4},x=$$\frac{7 \pi}{4}$ Relative minimum: $x=\pi, x=\frac{3 \pi}{2} , x=\frac{\pi}{2}$

Work Step by Step

First derivative \[ \frac{2|\sin 2 x| \cos 2 x}{\sin 2 x}=f^{\prime}(x) \] Critical points (zeros of first derivative or point where first derivative does not exist) \[ x=\pi, x=\frac{5 \pi}{4}, x=\frac{3 \pi}{2}, x=\frac{\pi}{4}, x=\frac{\pi}{2}, x=\frac{3 \pi}{4},x=\frac{7 \pi}{4} \] Second derivative \[ -4|\sin 2 x|=f^{\prime \prime}(x) \] Values of the second derivative at the critical point: $f^{\prime \prime}\left(\frac{\pi}{4}\right)=-4<0$ $f^{\prime \prime}\left(\frac{\pi}{2}\right)=0$ $f^{\prime \prime}\left(\frac{3 \pi}{4}\right)=-4<0$ $f^{\prime \prime}(\pi)=0$ $f^{\prime \prime}\left(\frac{5 \pi}{4}\right)=-4<0$ $f^{\prime \prime}\left(\frac{3 \pi}{2}\right)=0$ $f^{\prime \prime}\left(\frac{7 \pi}{4}\right)=-4<0$ Relative maximum: $ x=\frac{5 \pi}{4}, x=\frac{\pi}{4}, x=\frac{3 \pi}{4},x=$$\frac{7 \pi}{4}$ Relative minimum: $x=\pi, x=\frac{3 \pi}{2} , x=\frac{\pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.