Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 3 - The Derivative In Graphing And Applications - 3.1 Analysis Of Functions I: Increase, Decrease, and Concavity - Exercises Set 3.1 - Page 194: 5

Answer

$\frac{dy}{dx}=\frac{1-3y^2-2xy}{x^2+9xy^2}$

Work Step by Step

$x^2y + 3xy^3 − x = 3$ $\frac{d}{dx}( x^2y + 3xy^3 − x)=\frac{d}{dx}(3) $ $\frac{d}{dx}(x^2y)+3\frac{d}{dx}(xy^3)-\frac{dx}{dx}=0$ $x^2\frac{dy}{dx}+y\frac{d}{dx}(x^2)+3[x\frac{d}{dx}(y^3)+y^3\frac{dx}{dx}]-1=0 $ $x^2\frac{dy}{dx}+y(2x)+3[x\frac{d}{dy}(y^3 )\frac{dy}{dx}+y^3]-1=0 $ $x^2\frac{dy}{dx}+2xy+3[x(3y^2)\frac{dy}{dx}+y^3]-1=0 $ $x^2\frac{dy}{dx}+2xy+3[3xy^2\frac{dy}{dx}+y^3]-1=0 $ $x^2\frac{dy}{dx}+2xy+9xy^2\frac{dy}{dx}+3y^3-1=0 $ $x^2\frac{dy}{dx}+9xy^2\frac{dy}{dx}=1-3y^3-2xy $ $(x^2+9xy^2)\frac{dy}{dx}=1-3y^3-2xy $ $\frac{dy}{dx}=\frac{1-3y^2-2xy}{x^2+9xy^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.