Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 3 - The Derivative In Graphing And Applications - 3.1 Analysis Of Functions I: Increase, Decrease, and Concavity - Exercises Set 3.1 - Page 194: 3

Answer

$ \frac{dy}{dx} =-\frac{x}{y}$ OR $\frac{dy}{dx}= \mp \frac{x}{ \sqrt {100-x^2 }}$

Work Step by Step

$x^2+y^2=100$ $ \frac{d}{dx}(x^2+y^2)=\frac{d}{dx}(100) $ $ \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) =0$ $ 2x + \frac{d}{dy}(y^2)\frac{dy}{dx} =0$ $ 2x + 2y \frac{dy}{dx} =0$ $ 2y \frac{dy}{dx} =-2x$ $ y \frac{dy}{dx} =-x$ $ \frac{dy}{dx} =-\frac{x}{y}$ Since $x^2+y^2=100$ $y^2=100-x^2$ $\sqrt{y^2}= \sqrt {100-x^2}$ $y=\pm \sqrt {100-x^2}$ Putting in $ \frac{dy}{dx} =-\frac{x}{y}$ $\frac{dy}{dx}= \mp \frac{x}{ \sqrt {100-x^2 }}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.