Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 3 - The Derivative In Graphing And Applications - 3.1 Analysis Of Functions I: Increase, Decrease, and Concavity - Exercises Set 3.1 - Page 194: 2

Answer

(a)$\frac{dy}{dx}= 2\sqrt y \cos x$ (b) $\frac{dy}{dx}= 2\sin x \cos x+4\cos x$ (c)$\frac{dy}{dx}=2\sin x \cos x +4\cos x$

Work Step by Step

$\sqrt y -\sin x=2$ (a)$\frac{d}{dx}( \sqrt y -\sin x)= \frac{d}{dx}(2) $ $\frac{d}{dx} \sqrt y-\frac{d}{dx} \sin x =0 $ $ \frac{d}{dx}(y^{ \frac{1}{2}})-\cos x=0 $ $ \frac{d}{dy}(y^{ \frac{1}{2}}) \frac{dy}{dx}-\cos x=0 $ $ \frac{1}{2}y^{ \frac{1}{2}-1} \frac{dy}{dx}-\cos x=0 $ $ \frac{1}{2}y^{ -\frac{1}{2}} \frac{dy}{dx}-\cos x=0 $ $ \frac{1}{2} \frac{1}{y^{\frac{1}{2}}}\frac{dy}{dx}=\cos x $ $\frac{1}{2} \frac{1}{\sqrt y} \frac{dy}{dx}=\cos x$ $\frac{dy}{dx}= 2\sqrt y \cos x$ (b)$\sqrt y -\sin x=2$ $\sqrt y =2+\sin x$ Squaring $(\sqrt y)^2=(2+\sin x)^2$ $y=4+\sin^2{x+4\sin x}$ $ \frac{dy}{dx}= \frac{d}{dx}( 4+\sin^2{x+4\sin x} ) $ $\frac{dy}{dx}=\frac{d}{dx}(4)+ \frac{d}{dx} (\sin^2{x})+4\frac{d}{dx}(\sin x) $ $\frac{dy}{dx}= 0+2\sin x\frac{d}{dx}(\sin {x})+4\cos x$ $\frac{dy}{dx}= 2\sin x \cos x+4\cos x$ $\frac{dy}{dx}= 2\sin x \cos x+4\cos x$ (c)Given equation $\sqrt y -\sin x=2$ $\sqrt y=2 +\sin x$ Putting in $\frac{dy}{dx}= 2\sqrt y \cos x$ $\frac{dy}{dx}= 2( 2 +\sin x ) \cos x$ $\frac{dy}{dx}=4\cos x+2\sin x \cos x$ $\frac{dy}{dx}=2\sin x \cos x +4\cos x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.