Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - Chapter 2 Review Exercises - Page 184: 9

Answer

a) $\frac{-2}{\sqrt{9-4x}}$ b) $\frac{1}{(x+1)^2}$

Work Step by Step

a) We have, $\frac{d\sqrt{9-4x}}{dx}$ $\quad = \frac{1}{2\sqrt{9-4x}}\times \frac {d(9-4x)}{dx}\quad$ (Chain rule) $\quad = \frac{-2}{\sqrt{9-4x}}\quad\quad (\because\frac {d(9-4x)}{dx}=-4)$ b) We have, $\frac{d(\frac{x}{x+1})}{dx}$ Let $x = U, x+1=V$ By quotient rule, $\implies \frac{dy}{dx} = \frac{U'V-V'U}{V^2} = \frac{(1)(x+1)-(1)(x)}{(x+1)^2} = \frac{1}{(x+1)^2}$ Checking result using derivative formula: $\frac {d(f(x))}{dx} = \lim\limits_{h \to 0} \frac{f(x+h)-f(x)}{h}$ a) $\frac {d(f(x))}{dx} = \lim\limits_{h \to 0} \frac{\sqrt{9-4(x+h)}-\sqrt{9-4x}}{h}$ Rationalizing numerator, $\frac {d(f(x))}{dx} = \lim\limits_{h \to 0} \frac{\sqrt{9-4(x+h)}-\sqrt{9-4x}}{h}\times\frac{\sqrt{9-4(x+h)}+\sqrt{9-4x}}{{\sqrt{9-4(x+h)}+\sqrt{9-4x}}} = \lim\limits_{h \to 0}\frac{-4h}{h({\sqrt{9-4(x+h)}+\sqrt{9-4x})}}$ Cancelling $h$ and applying limit, $\implies \frac{-4}{({\sqrt{9-4(x)}+\sqrt{9-4x})}} = \frac{-4}{2{\sqrt{9-4(x)}}}=\frac{-2}{\sqrt{9-4x}}$ $\therefore Verified.$ b) $\frac {d(f(x))}{dx} = \lim\limits_{h \to 0} \frac{\frac{x+h}{x+h+1}-\frac{x}{x+1}}{h}$ Taking LCM of numerator, $\frac{d(f(x))}{dx} = \frac{\frac{(x+h)(x+1)-x(x+h+1)}{(x+h+1)(x+1)}}{h} = \frac{(x+h)(x+1)-x(x+h+1)}{(h)(x+h+1)(x+1)} = \frac{h}{(h)(x+h+1)(x+1)}$ Taking limit and cancelling h, $\implies \frac{1}{(x+1)(x+1)} = \frac{1}{(x+1)^2}$ $\therefore Verified.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.