Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - Chapter 2 Review Exercises - Page 184: 18

Answer

$f''(x) = \frac{-(4 x ((1 + x^2) - x sin(2 x)) sec^2(x))}{(1 + x^2)^3} + \frac{(sec^2(x) (2 x - sin(2 x) - 2 x cos(2 x)))}{(1 + x^2)^2}+ \frac{(2 ((1 + x^2) - x sin(2 x)) tan(x) sec^2(x))}{(1 + x^2)^2}$

Work Step by Step

a) Using WolframAlpha and inputting "limit (tan(x+h)/(1+(x+h)^2) - tan(x)/(1+x^2))/h as h approaches 0", we get $f'(x) =\frac{sec^2(x) (1 + x^2 - x sin(2 x))}{(1 + x^2)^2}$ b) $f'(x) = \frac{(x^2+1)sec^2(x) - tan(x)(2x)}{(x^2+1)^2} = \frac{(sec^2(x) (1 + x^2 - x sin(2 x)))}{(1 + x^2)^2}$ c) Using WolframAlpha and inputting "derivative (sec^2(x) (1 + x^2 - x sin(2 x)))/(1 + x^2)^2", we get $f''(x) = \frac{-(4 x ((1 + x^2) - x sin(2 x)) sec^2(x))}{(1 + x^2)^3} + \frac{(sec^2(x) (2 x - sin(2 x) - 2 x cos(2 x)))}{(1 + x^2)^2}+ \frac{(2 ((1 + x^2) - x sin(2 x)) tan(x) sec^2(x))}{(1 + x^2)^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.