Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.5 Triple Integrals - Exercises Set 14.5 - Page 1045: 8

Answer

$$\frac{1}{6}\pi $$

Work Step by Step

$$\eqalign{ & \int_1^2 {\int_z^2 {\int_0^{\sqrt 3 y} {\frac{y}{{{x^2} + {y^2}}}} } } dxdydz \cr & = \int_1^2 {\int_z^2 {\left[ {\int_0^{\sqrt 3 y} {\frac{y}{{{x^2} + {y^2}}}} dx} \right]} } dydz \cr & {\text{Solve the inner integral}}{\text{, integrate with respect to }}x,{\text{ treat }}y{\text{ and }}z{\text{ as constants}} \cr & \int_0^{\sqrt 3 y} {\frac{y}{{{x^2} + {y^2}}}} dx = \left[ {\arctan \left( {\frac{x}{y}} \right)} \right]_0^{\sqrt 3 y} \cr & {\text{Evaluate the limits in the variable }}x \cr & = \arctan \left( {\frac{{\sqrt 3 y}}{y}} \right) - \arctan \left( {\frac{0}{y}} \right) \cr & = \frac{\pi }{3} - 0 \cr & {\text{Then}}{\text{,}} \cr & \int_1^2 {\int_z^2 {\left[ {\int_0^{\sqrt 3 y} {\frac{y}{{{x^2} + {y^2}}}} dx} \right]} } dydz = \int_1^2 {\int_z^2 {\left( {\frac{\pi }{3}} \right)} } dydz \cr & = \frac{\pi }{3}\int_1^2 {\left( {\int_z^2 {dy} } \right)} dz \cr & {\text{Integrate with respect to }}y,{\text{ treat }}z{\text{ as a constant}} \cr & \int_z^2 {dy} = \left( z \right)_z^2 = 2 - z \cr & \frac{\pi }{3}\int_1^2 {\left( {\int_z^2 {dy} } \right)} dz = \frac{\pi }{3}\int_1^2 {\left( {2 - z} \right)} dz \cr & {\text{Integrate}} \cr & = \frac{\pi }{3}\left( {2z - \frac{{{z^2}}}{2}} \right)_1^2 \cr & {\text{Evaluate}} \cr & = \frac{\pi }{3}\left( {2\left( 2 \right) - \frac{{{{\left( 2 \right)}^2}}}{2}} \right) - \frac{\pi }{3}\left( {2\left( 1 \right) - \frac{{{{\left( 1 \right)}^2}}}{2}} \right) \cr & = \frac{\pi }{3}\left( 2 \right) - \frac{\pi }{3}\left( {\frac{3}{2}} \right) \cr & = \frac{1}{6}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.