Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.5 Triple Integrals - Exercises Set 14.5 - Page 1045: 4

Answer

$$\frac{{\sqrt 2 }}{8}$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /4} {\int_0^1 {\int_0^{{x^2}} {x\cos y} dzdxdy} } \cr & = \int_0^{\pi /4} {\int_0^1 {\left[ {\int_0^{{x^2}} {x\cos y} dz} \right]dxdy} } \cr & {\text{Solve the inner integral}}{\text{, integrate with respect to }}z,{\text{ treat }}y{\text{ and }}x{\text{ as constants}} \cr & \int_0^{{x^2}} {x\cos y} dz = \left[ {xz\cos y} \right]_0^{{x^2}} \cr & {\text{Evaluate the limits in the variable }}z \cr & = x\left( {{x^2}} \right)\cos y - x\left( 0 \right)\cos y \cr & = {x^3}\cos y \cr & {\text{Then}}{\text{,}} \cr & \int_0^{\pi /4} {\int_0^1 {\left[ {\int_0^{{x^2}} {x\cos y} dz} \right]dxdy} } = \int_0^{\pi /4} {\int_0^1 {{x^3}\cos ydxdy} } \cr & = \int_0^{\pi /4} {\left( {\int_0^1 {{x^3}\cos ydx} } \right)} dy \cr & {\text{Integrate with respect to }}x,{\text{ treat }}y{\text{ as a constant}} \cr & \int_0^1 {{x^3}\cos ydx} = \left( {\frac{{{x^4}}}{4}\cos y} \right)_0^1 \cr & = \frac{{{{\left( 1 \right)}^4}}}{4}\cos y - \frac{{{{\left( 0 \right)}^4}}}{4}\cos y \cr & = \frac{1}{4}\cos y \cr & \int_0^{\pi /4} {\left( {\int_0^1 {{x^3}\cos ydx} } \right)} dy = \frac{1}{4}\int_0^{\pi /4} {\cos y} dy \cr & {\text{Integrate}} \cr & = \frac{1}{4}\left( {\sin y} \right)_0^{\pi /4} \cr & {\text{Evaluate}} \cr & = \frac{1}{4}\left( {\sin \frac{\pi }{4} - \sin 0} \right) \cr & = \frac{1}{4}\left( {\frac{{\sqrt 2 }}{2}} \right) \cr & = \frac{{\sqrt 2 }}{8} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.