Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.5 Triple Integrals - Exercises Set 14.5 - Page 1045: 5

Answer

$$\frac{{81}}{5}$$

Work Step by Step

$$\eqalign{ & \int_0^3 {\int_0^{\sqrt {9 - {z^2}} } {\int_0^x {xy} dydxdz} } \cr & = \int_0^3 {\int_0^{\sqrt {9 - {z^2}} } {\left[ {\int_0^x {xy} dy} \right]dxdz} } \cr & {\text{Solve the inner integral}}{\text{, integrate with respect to }}y,{\text{ treat }}z{\text{ and }}x{\text{ as constants}} \cr & \int_0^x {xy} dy = \left[ {\frac{{x{y^2}}}{2}} \right]_0^x \cr & {\text{Evaluate the limits in the variable }}y \cr & = \frac{{x{{\left( x \right)}^2}}}{2} - \frac{{x{{\left( 0 \right)}^2}}}{2} \cr & = \frac{{{x^3}}}{2} \cr & {\text{Then}}{\text{,}} \cr & \int_0^3 {\int_0^{\sqrt {9 - {z^2}} } {\left[ {\int_0^x {xy} dy} \right]dxdz} } = \int_0^3 {\int_0^{\sqrt {9 - {z^2}} } {\left( {\frac{{{x^3}}}{3}} \right)dxdz} } \cr & = \int_0^3 {\left[ {\int_0^{\sqrt {9 - {z^2}} } {\left( {\frac{{{x^3}}}{2}} \right)dx} } \right]} dz \cr & {\text{Integrate with respect to }}x,{\text{ treat }}y{\text{ as a constant}} \cr & \int_0^{\sqrt {9 - {z^2}} } {\left( {\frac{{{x^3}}}{2}} \right)dx} = \left( {\frac{{{x^4}}}{8}} \right)_0^{\sqrt {9 - {z^2}} } \cr & = \frac{{{{\left( {\sqrt {9 - {z^2}} } \right)}^4}}}{8} - \frac{{{{\left( 0 \right)}^4}}}{8} \cr & = \frac{1}{8}{\left( {9 - {z^2}} \right)^2} \cr & = \frac{1}{8}\left( {81 - 18{z^2} + {z^4}} \right) \cr & \int_0^3 {\left[ {\int_0^{\sqrt {9 - {z^2}} } {\left( {\frac{{{x^3}}}{3}} \right)dx} } \right]} dz = \frac{1}{8}\int_0^3 {\left( {81 - 18{z^2} + {z^4}} \right)} dz \cr & {\text{Integrate}} \cr & = \frac{1}{8}\left( {81z - 6{z^3} + \frac{{{z^5}}}{5}} \right)_0^3 \cr & {\text{Evaluate}} \cr & = \frac{1}{8}\left( {81\left( 3 \right) - 6{{\left( 3 \right)}^3} + \frac{{{{\left( 3 \right)}^5}}}{5}} \right) - \frac{1}{{12}}\left( 0 \right) \cr & = \frac{1}{8}\left( {\frac{{648}}{5}} \right) \cr & = \frac{{81}}{5} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.