Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.9 Lagrange Multipliers - Exercises Set 13.9 - Page 997: 34

Answer

Minimum height=$1$ at $ (±1,0)$ Maximum height =$4 $ at $(0,±1)$

Work Step by Step

\[ x^{2}+4 y^{2}=z \] The constraint is $g(x, y,)=0=x^{2}+y^{2}-1$ We find the least amount for its construction $f$ by using Lagrange multipliers, \[ \lambda \nabla g=\nabla z \] \[ \begin{aligned} \nabla z &=2 x \hat{i}+8 y \hat{j} \\ \nabla g &=2 x \hat{i}+2 y \hat{j} \\ \nabla z &=\lambda \nabla g \\ 2 x \hat{i}+8 y \hat{j} &=\lambda 2 x \hat{i}+2 y \hat{j} \end{aligned} \] \[ \begin{array}{l} 2 x \lambda=2x \\ \lambda(2 y)=8y \end{array} \] $y \neq 0,$ and then $4=\lambda$ \[ 0=x \] \[ \begin{aligned} 1=y^{2} & \\ 4 &=x^{2}+4 y^{2}=z \end{aligned} \] $0=y,$ and then \[ \begin{aligned} 1=x^{2} & \\ 1=z & \end{aligned} \] Maximum height at (0,±1) \[ \begin{array}{l} z=x^{2}+4 y^{2} \\ z=0+4(1) \\ 4=z \end{array} \] Minimum height at (±1,0) \[ \begin{array}{l} z=x^{2}+4 y^{2} \\ 1=z \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.