Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.9 Lagrange Multipliers - Exercises Set 13.9 - Page 997: 27

Answer

So the minimum value $=5 \quad \operatorname{at}(\pm \sqrt{5}, 0,0)$

Work Step by Step

We are given a function $z^{2}+y^{2}+x^{2}=f(x, y)$ and the constraint $g(x, y)=$ $-5+x^{2}-y z$ We want to maximize the function $f$ by using Lagrange multipliers, \[ \lambda \nabla g=\nabla f \] We will need the gradient \[ \begin{aligned} \nabla f &=2 x \hat{i}+2 y \hat{j}+2 z \hat{k} \\ \nabla g &=2 x \hat{i}-z \hat{j}-y \hat{k} \\ \because \quad \nabla f &=\lambda \nabla g \\ (2 x \hat{i}+2 y \hat{j}+2 z \hat{k}) &=\lambda(2 x \hat{i}-z \hat{j}-y \hat{k}) \end{aligned} \] Which is equivalent to the pair of equations: \[ \begin{aligned} &\lambda 2 x=2 x \\ &\lambda(-z) = 2y\\ &\lambda(-y) =2z\\ \Rightarrow \frac{2 x}{2 x} &=\frac{2 y}{-z}=\frac{2 z}{-y} \end{aligned} \] If $\lambda \neq\pm 2,$ then $y=z=0;$ thus, from the constraint equation $-5-z y+x^{2}$ \[ 5=x^{2}-0 \quad \Rightarrow \pm \sqrt{5}=x \] \[ \begin{array}{l} (\pm \sqrt{5})^{2}+0+0 =f\\ 5=f \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.