Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.9 Lagrange Multipliers - Exercises Set 13.9 - Page 997: 32

Answer

$3(2 v)^{2 / 3}=$Minimum value

Work Step by Step

\[ 2 x z+2 y z+x y=f(x, y, z) \] The constraint $g(x, y, z)=-v+x y z=0$ We want to require the least amount for its construction $f$ by using Lagrange multipliers, \[ \lambda \nabla g=\nabla f \] \[ \begin{aligned} \nabla f &=(y+2 z) \hat{i}+(x+2 z) \hat{j}+(2 x+2 y) \hat{k} \\ \nabla g &=y z \hat{i}+x z \hat{j}+x y \hat{k} \\ \because \quad \nabla f &=\lambda \nabla g \\ (y+2 z) \hat{i}+(x+2 z) \hat{j}+(2 x+2 y) \hat{k}) &=\lambda(y z \hat{i}+z x \hat{j}+x y \hat{k}) \end{aligned} \] Which is equivalent to the pair of equations \[ \begin{aligned} (y+2 z) &=\lambda(y z) \\ (x+2 z) &=\lambda(z x) \\ (2 x+2 y) &=\lambda(x y) \\ \Rightarrow \frac{(y+2 z)}{y z} &=\frac{(x+2 z)}{z x}=\frac{(2 x+2 y)}{x y} \end{aligned} \] $\lambda=0$ leads to $x=y=z=0,$ which is not a box at all. Thus, solve for $\quad \lambda=1 / z+2 / x$ \[ \begin{aligned} &1 / z+2 / y =\lambda\\ &2 / y+2 / x= \lambda \\ &=y=2 z \\ 2v= x^{3} & \\ f(x, y, z) &=x(x)+2 x(x / 2)+2 x(x / 2) \\ 3 x^{2} =f(x, y, z) &\\ 3(2 v)^{2 / 3}=f(x, y, z) & \end{aligned} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.