Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.8 Maxima And Minima Of Functions Of Two Variables - Exercises Set 13.8 - Page 987: 48

Answer

The critical point occurs at $x=9$ and $\phi=\pi / 3$

Work Step by Step

We find: \[ \begin{array}{c} (1 / 2)(x \sin \phi)[(27-2 x)+(27-2 x+2 x \cos \phi)] =\operatorname{Area}(A)\\ 27 x \sin \phi-2 x^{2} \sin \phi+x^{2} \sin \phi \cos \phi =\operatorname{Arca}(A)\\ 27 x \sin \phi-2 x^{2} \sin \phi+x^{2} \sin \phi \cos \phi =f(x, \phi)\\ \sin \phi(27-4 x+2 x \cos \phi)=0=f_{x}(x, \phi) \\ x\left(27 \cos \phi-2 x \cos \phi-x \sin ^{2} \phi\right) =f_{\phi}(x, \phi)\\ x\left(27 \cos \phi-2 x \cos \phi+2 x \cos ^{2} \phi-x\right)=0=f_{\phi}(x, \phi) \end{array} \] We get from eq.(1) that $\cos \phi=(4 x-27) /(2 x), x \neq 0$ From eq. $(2): \cos \phi=(4 x-27) /(2 x),$ which yields $4 x-27-x=0,$ so $x=9$ and \[ \cos \phi=1 / 2, \phi=\pi / 3 \] The critical point occurs at $x=9$ and $\phi=\pi / 3$ Using theorem $13.8.6,$ \[ f_{x x}\left(x_{0}, \phi_{0}\right) f_{\phi}\left(x_{0}, \phi_{0}\right)-f_{x \phi}^{2}\left(x_{0}, \phi_{0}\right)=D \] Here $D>0$ and $f_{x x}(9, \pi / 3)<0,$ so $f$ has a relative maximum at $(9, \pi / 3)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.