Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.8 Maxima And Minima Of Functions Of Two Variables - Exercises Set 13.8 - Page 987: 38

Answer

9, 9, 9

Work Step by Step

Let $a^{2}+b^{2}+c^{2}=f(a, b, c)$ be our function where we know that $27=a+b+c$. Taking into account that \[ \begin{aligned} g(a, b, 27-a-b)=g(a, b)=a^{2}=g(a, b, c)=a^{2}+b^{2}+(27-a-b)^{2} \\ g(a, b)=2 a^{2}+2 b^{2}+2 a b-54(a+b)+27^{2} \end{aligned} \] We can use the first derivative test: \[ \begin{aligned} g_{a}=0 & \Rightarrow 4 a+2 b-54=0 \text { and } g_{b}=0 \Rightarrow 4 b+2 a-54=0 \\ & \Rightarrow\left\{\begin{array}{l} 4 a+2 b-54=0 \\ -8 b-4 a+108=0 \end{array}\right.\\ \Rightarrow-6 b+54=0 \Rightarrow b=54 / 6=9 \end{aligned} \] Now we can use the second derivative test for the critical point $P(9,9,9)$ \[ \begin{array}{r} g_{\text {oa }}=g_{t b}=4 \text { and } g_{\text {ab }}=2 \\ \Rightarrow D=g_{\text {aa }} g_{\text {bb }}-g_{\text {ab }}^{2}=4(4)-4>0 \text { and } g_{\text {an }}=4>0 \end{array} \] Since $D, g_{0 a}>0, g(a, b, c)$ has a absolute minimum at $P(9,9,9)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.