Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.8 Maxima And Minima Of Functions Of Two Variables - Exercises Set 13.8 - Page 987: 40

Answer

$P(\pm \sqrt{5}, 0,0)$

Work Step by Step

The distance from a piven point $P(x, y, x)$ to the origin is given by \[ \sqrt{x^{2}+y^{2}+z^{2}}=d \] Since all point on the given surface satisfy $x^{2}=5+y=$, we have that \[ \sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{5+y z+y^{2}+z^{2}}=d \] Using the first derivative test: \[ \begin{array}{l} d_{y}=0 \Rightarrow \frac{1}{2 d} \frac{\partial}{\partial y}\left(5+y z+y^{2}+z^{2}\right)=0 \Rightarrow z+2 y=0 \\ d_{z}=0 \Rightarrow \frac{1}{2 d} \frac{\partial}{\partial z}\left(5+y z+y^{2}+z^{2}\right)=0 \Rightarrow y+2 z=0 \end{array} \] From the first of the last two equations, we have $-2 y=z$. Using this in the second equation gives: \[ 0=y+2(-2 y) \Rightarrow 0=y \] Hence $z=-2 y=-2(0)=0$ and $x^{2}=5+y z=5+0(0)=5 \Rightarrow x=\pm \sqrt{5}$ Then $P(\pm 5,0,0)$ are the only critical points. Using the second derivative test at this point we have: \[ \begin{aligned} f_{\mathrm{vv}}(0,0) &=\frac{1}{4 d^{3}}\left(20+3(0)^{2}\right)=\frac{20}{4 d^{3}} \\ f_{x z}(0,0) &=\frac{1}{4 d^{3}}\left(20+3(0)^{2}\right)=\frac{20}{4 d^{3}} \\ f_{z v}(0,0) &=\frac{20(20)}{\left(-4 d^{3}\right)^{2}}-\frac{10^{2}}{\left(4 d^{3}\right)^{2}}=300 /\left(4 d^{3}\right)^{2} \frac{1}{4 d^{3}}(10-3(0)(0))=\frac{10}{4 d^{3}} \\ D &=f_{v y} f_{z z}-f_{z y}^{2}=\frac{20(20)}{\left(4 d^{3}\right)^{2}}-\frac{10^{2}}{\left(4 d^{3}\right)^{2}}=300 /\left(4 d^{3}\right)^{2}>0 \end{aligned} \] At $P(\pm \sqrt{5}, 0,0),$ the distance from the surface to the origin is a minimum.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.