Answer
False
Work Step by Step
$f(x, y)=\left\{\begin{array}{ll}-1 & , x<0 \\ 1 & , x \geq 0\end{array} \quad g(x, y)=\left\{\begin{array}{ll}1 & , x<0 \\ -1 & , x \geq 0\end{array}\right.\right.$
Then
$(g+f)(x, y)=0, \quad(\text { continuous })$
$(g f)(x, y)=0, \quad(\text { continuous })$
But neither of $\mathrm{f}$ or $\mathrm{g}$ are continuous.