Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.2 Limits And Continuity - Exercises Set 13.2 - Page 926: 28

Answer

0

Work Step by Step

We find: \begin{array}{c} x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi \\ \left|\frac{\sin x \sin y}{\sqrt{x^{2}+2 y^{2}+3 z^{2}}}\right| \leq\left|\frac{x y}{\sqrt{x^{2}+y^{2}+z^{2}}}\right|=\frac{\rho^{2} \sin ^{2} \phi \cos \theta \sin \theta}{\rho} \leq \rho \\ \lim _{\rho \rightarrow 0+} \rho=0 \quad \Rightarrow \quad \lim _{(x, y, z) \rightarrow(0,0,0)} \frac{\sin x \sin y}{\sqrt{x^{2}+2 y^{2}+3 z^{2}}}=0 \end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.