Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.6 Continuity of Trigonometric Functions - Exercises Set 1.6 - Page 106: 46

Answer

$$2$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to \pi /4} \frac{{\tan x - 1}}{{x - \pi /4}} \cr & = \mathop {\lim }\limits_{x \to \pi /4} \frac{{\frac{{\sin x}}{{\cos x}} - 1}}{{x - \pi /4}} \cr & = \mathop {\lim }\limits_{x \to \pi /4} \frac{{\sin x - \cos x}}{{\cos x\left( {x - \pi /4} \right)}} \cr & \cr & {\text{Let }}t = x - \pi /4 \cr & x \to \pi /4 \Rightarrow t = \pi - \pi = 0 \cr & t \to 0{\text{ when }}x \to \pi /4 \cr & \cr & {\text{Substituting}} \cr & \mathop {\lim }\limits_{x \to \pi /4} \frac{{\sin x - \cos x}}{{\cos x\left( {x - \pi /4} \right)}} = \mathop {\lim }\limits_{t \to 0} \frac{{\sin \left( {t + \pi /4} \right) - \cos \left( {t + \pi /4} \right)}}{{\cos \left( {t + \pi /4} \right)t}} \cr & = \mathop {\lim }\limits_{t \to 0} \frac{{\sin \left( {t + \pi /4} \right) - \cos \left( {t + \pi /4} \right)}}{{\cos \left( {t + \pi /4} \right)t}} \cr & {\text{Where:}}\,\,\sin \left( {t + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\left( {\sin t + \cos t} \right){\text{ and }} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\cos \left( {t + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\left( {\cos t - \sin t} \right) \cr & \cr & = \mathop {\lim }\limits_{t \to 0} \frac{{\frac{{\sqrt 2 }}{2}\left( {\sin t + \cos t} \right) - \frac{{\sqrt 2 }}{2}\left( {\cos t - \sin t} \right)}}{{\frac{{\sqrt 2 }}{2}\left( {\cos t - \sin t} \right)t}} \cr & = \mathop {\lim }\limits_{t \to 0} \frac{{\sin t + \cos t - \cos t + \sin t}}{{\left( {\cos t - \sin t} \right)t}} \cr & = \mathop {\lim }\limits_{t \to 0} \frac{{2\sin t}}{{\left( {\cos t - \sin t} \right)t}} \cr & {\text{Use the product property of limits}} \cr & = 2\left( {\mathop {\lim }\limits_{t \to 0} \frac{{\sin t}}{t}} \right)\left( {\mathop {\lim }\limits_{t \to 0} \frac{1}{{\cos t - \sin t}}} \right) \cr & = 2\left( 1 \right)\left( {\frac{1}{{\cos 0 - \sin 0}}} \right) \cr & = 2\left( 1 \right)\left( 1 \right) \cr & = 2 \cr & {\text{Therefore}}{\text{,}} \cr & \mathop {\lim }\limits_{x \to \pi /4} \frac{{\tan x - 1}}{{x - \pi /4}} = 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.