Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.6 Continuity of Trigonometric Functions - Exercises Set 1.6 - Page 106: 44

Answer

$$\frac{\pi }{4}$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 2} \frac{{\cos \left( {\pi /x} \right)}}{{x - 2}} \cr & {\text{Using the hint }}\left[ {{\text{Let }}t = \frac{\pi }{2} - \frac{\pi }{x}} \right].{\text{ we have}} \cr & x \to 2 \Rightarrow t = \frac{\pi }{2} - \frac{\pi }{2} = 0 \cr & t \to 0{\text{ when }}x \to 2 \cr & t = \frac{\pi }{2} - \frac{\pi }{x}\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\frac{\pi }{x} = \frac{\pi }{2} - t \cr & and \cr & x = \frac{{2\pi }}{{\pi - 2t}} \cr & {\text{Substituting}} \cr & \,\,\mathop {\lim }\limits_{x \to 2} \frac{{\cos \left( {\pi /x} \right)}}{{x - 2}} = \,\,\mathop {\lim }\limits_{t \to 0} \frac{{\cos \left( {\frac{\pi }{2} - t} \right)}}{{\frac{{2\pi }}{{\pi - 2t}} - 2}} \cr & = \,\,\mathop {\lim }\limits_{t \to 0} \frac{{\cos \left( {\frac{\pi }{2} - t} \right)}}{{\frac{{4t}}{{\pi - 2t}}}} = \,\,\mathop {\lim }\limits_{t \to 0} \frac{{\left( {\pi - 2t} \right)\cos \left( {\frac{\pi }{2} - t} \right)}}{{4t}} \cr & = \,\,\mathop {\lim }\limits_{t \to 0} \frac{{\left( {\frac{\pi }{2} - t} \right)\cos \left( {\frac{\pi }{2} - t} \right)}}{{2t}} \cr & {\text{Use the Cofunction identity }}\cos \left( {\frac{\pi }{2} - x} \right) = \sin x.{\text{ we have}} \cr & = \,\,\mathop {\lim }\limits_{t \to 0} \frac{{\left( {\frac{\pi }{2} - t} \right)\sin t}}{{2t}} \cr & {\text{Use the product property of limits}} \cr & = \,\,\left[ {\mathop {\lim }\limits_{t \to 0} \left( {\frac{\pi }{2} - t} \right)} \right]\left[ {\mathop {\lim }\limits_{t \to 0} \frac{{\sin t}}{{2t}}} \right] \cr & = \,\frac{1}{2}\,\left[ {\mathop {\lim }\limits_{t \to 0} \left( {\frac{\pi }{2} - t} \right)} \right]\left[ {\mathop {\lim }\limits_{t \to 0} \frac{{\sin t}}{t}} \right] \cr & = \,\frac{1}{2}\,\left[ {\left( {\frac{\pi }{2} - 0} \right)} \right]\left[ 1 \right] \cr & = \,\frac{\pi }{4} \cr & {\text{Therefore}}{\text{,}} \cr & \mathop {\lim }\limits_{x \to 2} \frac{{\cos \left( {\pi /x} \right)}}{{x - 2}} = \frac{\pi }{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.