Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Appendix B - Trigonometry Review - Exercise Set B - Page A23: 4

Answer

$$4a)\,\,{18^ \circ },\,\,\,4b){\left( {\frac{{360}}{\pi }} \right)^ \circ },\,\,\,\,4c){72^ \circ },\,\,\,\,\,4d){210^ \circ }$$

Work Step by Step

$$\eqalign{ & 4\left( {\text{a}} \right)\,\,\,\frac{\pi }{{10}} \cr & {\text{Express the angle in degrees}} \cr & \frac{\pi }{{10}} = \,\,\frac{\pi }{{10}}{\left( {\frac{{180}}{\pi }} \right)^ \circ } \cr & \,\,\,\,\,\,\, = \,\,{\left( {\frac{{180}}{{10}}} \right)^ \circ } \cr & \,\,\,\,\,\,\, = \,{18^ \circ } \cr & \cr & 4\left( {\text{b}} \right)\,\,2 \cr & {\text{Express the angle in degrees}} \cr & 2 = \,2{\left( {\frac{{180}}{\pi }} \right)^ \circ } \cr & \,\,\,\,\,\,\, = \,{\left( {\frac{{360}}{\pi }} \right)^ \circ } \cr & \cr & 4\left( {\text{c}} \right)\,\,\frac{{2\pi }}{5} \cr & {\text{Express the angle in degrees}} \cr & \frac{{2\pi }}{5} = \,\,\frac{{2\pi }}{5}{\left( {\frac{{180}}{\pi }} \right)^ \circ } \cr & \,\,\,\,\,\,\, = \,{\left( {\frac{{360}}{5}} \right)^ \circ } \cr & \,\,\,\,\,\,\, = {72^ \circ } \cr & \cr & 4\left( {\text{d}} \right)\,\,\frac{{7\pi }}{6} \cr & {\text{Express the angle in degrees}} \cr & \frac{{7\pi }}{6} = \,\,\frac{{7\pi }}{6}{\left( {\frac{{180}}{\pi }} \right)^ \circ } \cr & \,\,\,\,\,\,\, = {210^ \circ } \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.