Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Appendix B - Trigonometry Review - Exercise Set B - Page A23: 1

Answer

(a) $\frac{5\pi}{12}$ (b) $\frac{13\pi}{6}$ (c) $\frac{\pi}{9}$ (d) $\frac{23\pi}{30}$

Work Step by Step

Use the concept $1^{\text o}=\frac{\pi}{180}\, \text {rad}$ for all parts. (a) Multiply the given degree by conversion factor $\frac{\pi}{180}$. $\begin{aligned}75^{\text o}&=\left(\frac{\pi}{180}\cdot75\right)\, \text {rad} \\&=\frac{5\pi}{12}\,\text{rad}\end {aligned}$ So, the radian measure of given angle is $\frac{5\pi}{12}$. (b) Multiply the given degree by conversion factor $\frac{\pi}{180}$. $\begin{aligned}390^{\text o}&=\left(\frac{\pi}{180}\cdot390\right)\, \text {rad} \\&=\frac{13\pi}{6}\,\text{rad}\end {aligned}$ So, the radian measure of given angle is $\frac{13\pi}{6}$. (c) Multiply the given degree by conversion factor $\frac{\pi}{180}$. $\begin{aligned}20^{\text o}&=\left(\frac{\pi}{180}\cdot20\right)\, \text {rad} \\&=\frac{\pi}{9}\,\text{rad}\end {aligned}$ So, the radian measure of given angle is $\frac{\pi}{9}$. (d) Multiply the given degree by conversion factor $\frac{\pi}{180}$. $\begin{aligned}138^{\text o}&=\left(\frac{\pi}{180}\cdot138\right)\, \text {rad} \\&=\frac{23\pi}{30}\,\text{rad}\end {aligned}$ So, the radian measure of given angle is $\frac{23\pi}{30}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.