Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Appendix B - Trigonometry Review - Exercise Set B - Page A23: 2

Answer

(a) $\frac{7\pi}{3}$ (b) $\frac{\pi}{12}$ (c) $\frac{5\pi}{4}$ (d) $\frac{11\pi}{12}$

Work Step by Step

Use the concept $1^\circ=\frac{\pi}{180}\,\text{rad}$ for all parts. (a) Multiply the given degree by conversion factor $\frac{\pi}{180}$. $\begin{aligned}420^\circ&=\left(\frac{\pi}{180}\cdot420\right)\,\text{rad}\\&=\frac{7\pi}{3}\,\text{rad}\end{aligned}$ So, the radian measure of given angle is $\frac{7\pi}{3}$. (b) Multiply the given degree by conversion factor $\frac{\pi}{180}$. $\begin{aligned}15^\circ&=\left(\frac{\pi}{180}\cdot15\right)\,\text{rad}\\&=\frac{\pi}{12}\,\text{rad}\end{aligned}$ So, the radian measure of given angle is $\frac{\pi}{12}$. (c) Multiply the given degree by conversion factor $\frac{\pi}{180}$. $\begin{aligned}225^\circ&=\left(\frac{\pi}{180}\cdot225\right)\,\text{rad}\\&=\frac{5\pi}{4}\,\text{rad}\end{aligned}$ So, the radian measure of given angle is $\frac{5\pi}{4}$. (d) Multiply the given degree by conversion factor $\frac{\pi}{180}$. $\begin{aligned}165^\circ&=\left(\frac{\pi}{180}\cdot165\right)\,\text{rad}\\&=\frac{11\pi}{12}\,\text{rad}\end{aligned}$ So, the radian measure of given angle is $\frac{11\pi}{12}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.